Fast primality tests for numbers less than $50·10\sp 9$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primality Tests for Numbers of the Form

Let k,m ∈ Z, m ≥ 2, 0 < k < 2 and 2 6| k. In the paper we give a general primality criterion for numbers of the form k·2±1, which can be viewed as a generalization of the LucasLehmer test for Mersenne primes. In particular, for k = 3, 9 we obtain explicit primality tests, which are simpler than current known results. We also give a new primality test for Fermat numbers and criteria for 9 · 2 ± ...

متن کامل

Fast Primality Proving on Cullen Numbers

We present a unconditional deterministic primality proving algorithm for Cullen numbers. The expected running time and the worst case running time of the algorithm are Õ(logN) bit operations and Õ(logN) bit operations, respectively.

متن کامل

There are less transcendental numbers than rational numbers

According to a basic theorem of transfinite set theory the set of irrational numbers is uncountable, while the set of rational numbers is countable. This is contradicted by the fact that any pair of irrational numbers is separated by at least one rational number. Hence, in the interval [0,1] there exist more rational numbers than irrational numbers.

متن کامل

3.1 Classical Primality Tests

Andrew V. Sutherland In this lecture, we consider the following problem: given a positive integer N , how can we efficiently determine whether N is prime or not? This question is intimately related to the problem of factoring N . Without a method for determining primality, we have no way of knowing when we have completely factored N . This is a serious issue for probabilistic factorization algo...

متن کامل

On cyclotomic primality tests

In 1980, L. Adleman, C. Pomerance, and R. Rumely invented the first cyclotomic primality test, and shortly after, in 1981, a simplified and more efficient version was presented by H.W. Lenstra for the Bourbaki Seminar. Later, in 2008, Rene Schoof presented an updated version of Lenstra’s primality test. This thesis presents a detailed description of the cyclotomic primality test as described by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1986

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1986-0829639-7